Endogenous auxin biosynthesis and de novo root organogenesis

نویسندگان

  • Ya Lin Sang
  • Zhi Juan Cheng
  • Xian Sheng Zhang
چکیده

A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. Malvar TM. 2008. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. 1995. The lysine-dependent stimulation of lysine catabolism in tobacco seed requires calcium and protein-phosphorylation. Expression of de novo high-lysine alpha-helical coiled-coil proteins may significantly increase the accumulated levels of lysine in mature seeds of transgenic tobacco plants. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Induction of adventitious roots is essential for vegetative propagation of plants, and auxin has long been used as an exogenous root-inducing agent. In this issue of Journal of Experimental Botany, Chen et al. (pages 4273–4284) demonstrate that different members of the YUCCA family orchestrate the endogenous auxin biosynthesis that is required for the induction of adventitious roots. Sun Wukong, also known as the Monkey King, is the main character in the classical Chinese novel Journey to the West. As a fabled deity, he was endowed with magical properties allowing each of his hairs to be transformed into clones of himself as needed. Plants also possess the remarkable ability of multiplication , with detached pieces of adult tissues capable of forming an entire plant body (Gordon et al. This unique ability is mainly based on de novo organogenesis, in which adventitious shoots or roots are generated from isolated tissues or organs De novo organogenesis can be induced under both natural and tissue culture conditions (Chen et al., 2014). Plant organs, such as stems and leaves, give rise to adventitious roots under natural growth conditions and this property has long been used for vegetative propagation of elite genotypes in agriculture, forestry and horticulture (De Klerk et al., 1999). Six decades ago, Skoog and Miller demonstrated that the entire plant could be regenerated by tissue culture (Skoog and Miller, 1957). They showed that culturing explants in medium containing high levels of cytokinin induced the formation of adventitious shoots, whereas medium with high levels of auxin triggered initiation of adventitious roots. …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis

Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from l...

متن کامل

Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux.

Postembryonic de novo organogenesis represents an important competence evolved in plants that allows their physiological and developmental adaptation to changing environmental conditions. The phytohormones auxin and cytokinin (CK) are important regulators of the developmental fate of pluripotent plant cells. However, the molecular nature of their interaction(s) in control of plant organogenesis...

متن کامل

Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.

Plants have powerful regenerative abilities that allow them to recover from damage and survive in nature. De novo organogenesis is one type of plant regeneration in which adventitious roots and shoots are produced from wounded and detached organs. By studying de novo root organogenesis using leaf explants of Arabidopsis (Arabidopsis thaliana), we previously suggested that wounding is the first ...

متن کامل

Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3.

De novo organ regeneration is an excellent biological system for the study of fundamental questions regarding stem cell initiation, cell fate determination, and hormone signaling. Despite the general belief that auxin and cytokinin responses interact to regulate de novo organ regeneration, the molecular mechanisms underlying such a cross talk are little understood. Here, we show that spatiotemp...

متن کامل

WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis.

De novo organogenesis is a process through which wounded or detached plant tissues or organs regenerate adventitious roots and shoots. Plant hormones play key roles in de novo organogenesis, whereas the mechanism by which hormonal actions result in the first-step cell fate transition in the whole process is unknown. Using leaf explants of Arabidopsis thaliana, we show that the homeobox genes WU...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016